The Deep Ultra-Violet Free Electron Laser

X.J. Wang for DUV-FEL Team National Synchrotron Light Source

Presented at the ALFF Workshop October 30, 2003

Outline

- Introduction
- DUV-FEL Facility
- Recent Experimental Results SASE and HGHG
- DUV- FEL user science program ion pair imaging experiment
- Future upgrade and Summary

Free Electron Laser Configurations

Challenges:

- 1. Oscillator produces fully coherent output; but there is no High-quality mirrors in UV and X-ray range.
- 2. SASE output covers full spectrum, but it is only transverse coherent.
- 3. HGHG is capable of producing fully coherent output, seed laser limits its spectra coverage.

High Gain Harmonic Generation (HGHG) Principle

HGHG has the following advantages:

- Longitudinally fully coherent
- Narrower bandwidth than SASE
- Larger ratio of output/spontaneous radiation
- Central wavelength is stable
- Pulse length is short & controllable (20 fs)
- Output fluctuations can be reduced

DUV - FEL Facility

- A <u>dedicated</u> platform for the development of single-pass FEL Science and Technology, and its applications.
- The <u>only</u> short wavelength FEL project based on Laser Seeded High Gain Harmonic Generation
- Many <u>collaborative</u> relationships: BNL-ATF, APS, SLAC-LCLS, TJNAF-FEL, Duke, U. Maryland, TESLA

DUV - FEL Facility

- High-Brightness femto-second electron beam.
- Synchronized femto-second laser beam.
- Sophisticated electron beam and laser instrumentation
- HGHG FEL:

Electron Energy (MeV)	176	Peak Current (A) 300	
NISUS Period λ_{U} (cm)	3.89	NISUS length (m) 10	
Seed laser λ_S (nm)	800	Seed laser pulse length (0.1 - 6 FWHM) (ps)	
Energy/pulse at 266 nm (µJ)	100	Energy/pulse at the 3 rd ~ 1.0 harmonic 89 nm (μJ)	
HGHG pulse length (FWHM) (ps)	1 – 0.5	HGHG spectrum width (%)	
Spot size at 266 nm (rms, µm)	250	Spot size at 89 nm (rms,µm) 150	

FEL Measurements Energy, Spectrum, Synchronization and Pulse Length Measurements

Brookhaven Science Associates U.S. Department of Energy

Brookhaven Science Associates U.S. Department of Energy

Undulator and Electron Beam Parameters

Period	3.89 cm
Number of periods (length)	256 (10 m)
Peak field	0.31 T
Betatron wavelength (at 140 MeV)	20 m
Electron beam size, RMS (4 mm mrad)	250 um

Energy	Up to 200 MeV
Charge	300 pC
Normalized emittance	4 mm _∗ mrad
Compressed bunch length, RMS	0.3-0.6 ps
Energy spread, RMS	0.3 %

SASE Signal at DUV-FEL February 2002

266 nm SASE Signal along NISUS Wiggler

 L_G = 0.66 m I_o =550 Amp ϵ_n =3 mm-mrad Q=300 pC

266 nm HGHG Power vs. Distance

Average output: 100 µJ, 10% fluctuation

Spectrum of HGHG and SASE at 266 nm

HGHG Pulse Length Measurements

HGHG Pulse Length Measurements

Two-photon absorption pump probe autocorrelation traces

- Pulse length is 0.63 ps
- Seed laser 1.8 MW
- Saturation at the end of wiggler

- Pulse length is 0.81 ps
- Seed laser 80 MW
- Saturation after 5 m

HGHG Pulse Length Control by Seed Laser

HGHG pulse was measured using twophoton absorption auto-correlator for seed laser 6 ps to 150 fs. Slippage could lead to 100 to 200 fs HGHG pulse lengthening. Possible measurement errors are:

- •Resolution of micrometer (70 fs).
- •Jitters .
- •GVD Dispersion (70 fs/nm).

Intensity Fluctuation of SASE and HGHG

Harmonic Generation

$$P_2 = P_3 \left(\frac{K}{\gamma k_u \sigma_x}\right)^2 \left(\frac{K_2}{K_3}\right)^2 \left(\frac{b_2}{b_3}\right)^2$$

$$\left(\frac{P_3^{NL}}{\rho P_{\text{beam}}}\right) \approx |H_0|^2 \frac{16w_{1r}^3}{w_{3r}} \left(\frac{P_1}{\rho P_{\text{beam}}}\right)^3 \sim 1\%$$

half-way saturation

full saturation

BROOKHAVEN NATIONAL LABORATORY

Scaled to 100 uJ for 266 nm, assumed mono has equal efficiency at 89 and 266 nm, and a factor of 2 greater at 133 nm.

Other Capabilities at the DUV-FEL Facility

- Coherent THz Radiation
- Femto-second pulse radiolysis

Possible Future development:

- Ultra-fast plasma X-ray source.
- Femto-second electron diffraction.

XUV-FEL Scientific Opportunities

Near-term.

Probing Superexcited State Dynamics

Universal Probe of Reactive Scattering

XUV Probes of Surface Dynamics (M. G. White)

Longer-term.

Time-resolved photoelectron imaging

Nonlinear processes in the XUV (L. DiMauro)

Installation of the first experiment - Dec, 2002

Ion Pair Imaging station

Brookhaven Science Associates U.S. Department of Energy

Ion Pair Imaging Spectroscopy

Brookhaven Science Associates U.S. Department of Energy

23

Ion Pair Dissociation of CH₃F

F Images

Photon Energy:

13.52 eV

13.68 eV

13.95 eV

Brookhaven Science Associates U.S. Department of Energy

24

DUV-FEL Upgrade - 100 uJ at 100 nm

Summary

Tremendous progress was made in DUV-FEL in the last couple years.

We have developed a plan to upgrade DUV-FEL to 300 MeV and reach 100 nm for DUV-FEL.

